

ISOLATING VALVES (ON-OFF)

Flow data of isolating valves is normally used within the calculations for pipework sizing and system pressure losses when the valve is in the fully open position. Many on/off isolating valves spend most of the time in the fully open position and therefore these valves should have high K_V figures to reduce pressure drops, increase plant efficiency and contribute to reducing energy costs. Wouter Witzel has developed valves with a lot of attention being paid to achieving excellent flow characteristics.

Flow coefficient - at fully open valve position								
DN	NPS	K_V [m ³ /h] at Δp = 1 bar (acc. EN 1267)						
50	2"	43						
65	21/2"	85						
80	3"	108						
100	4"	193						
125	5"	501						
150	6"	878						
200	8"	1430						
250	10"	1952						
300	12"	4044						
350	14"	4592						
400	16"	7679						
450	18"	10375						
500	20"	12932						
600	24"	20273						

Note: $C_V = 1.16 \times K_V$.

Flow coefficient - at different opening angles										
DN	NPS	K_V [m ³ /h] at $\Delta p = 1$ bar (acc. EN 1267)								
		20°	30°	40°	50°	60°	70°	80°		
50	2"	4	8	16	26	33	38	41		
65	21/2"	7	16	34	53	67	77	84		
80	3"	11	29	52	71	87	102	110		
100	4"	31	63	96	125	153	174	191		
125	5"	58	110	156	221	300	385	461		
150	6"	88	150	221	315	453	613	783		
200	8"	149	268	420	604	830	1116	1379		
250	10"	261	460	692	981	1309	1638	1900		
300	12"	439	710	1066	1565	2237	3040	3789		
350	14"	516	830	1249	1847	2650	3573	4374		
400	16"	622	1031	1605	2459	3676	5260	6996		
450	18"	842	1392	2108	3142	4579	6443	8958		
500	20"	1057	1695	2592	3886	5695	8098	11304		
600	24"	1454	2344	3694	5641	8356	12242	17169		

Note: $C_V = 1.16 \times K_V$.

REGULATING VALVES

The sizing of regulating valves requires detailed calculations for each case, taking into account e.g. noise and cavitation.

Please ask Wouter Witzel for advice or ask for our special Technical data sheet for the selection and sizing of butterfly valves for control applications.